direct product, abelian, monomial, 2-elementary
Aliases: C22×C50, SmallGroup(200,14)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22×C50 |
C1 — C22×C50 |
C1 — C22×C50 |
Generators and relations for C22×C50
G = < a,b,c | a2=b2=c50=1, ab=ba, ac=ca, bc=cb >
(1 128)(2 129)(3 130)(4 131)(5 132)(6 133)(7 134)(8 135)(9 136)(10 137)(11 138)(12 139)(13 140)(14 141)(15 142)(16 143)(17 144)(18 145)(19 146)(20 147)(21 148)(22 149)(23 150)(24 101)(25 102)(26 103)(27 104)(28 105)(29 106)(30 107)(31 108)(32 109)(33 110)(34 111)(35 112)(36 113)(37 114)(38 115)(39 116)(40 117)(41 118)(42 119)(43 120)(44 121)(45 122)(46 123)(47 124)(48 125)(49 126)(50 127)(51 176)(52 177)(53 178)(54 179)(55 180)(56 181)(57 182)(58 183)(59 184)(60 185)(61 186)(62 187)(63 188)(64 189)(65 190)(66 191)(67 192)(68 193)(69 194)(70 195)(71 196)(72 197)(73 198)(74 199)(75 200)(76 151)(77 152)(78 153)(79 154)(80 155)(81 156)(82 157)(83 158)(84 159)(85 160)(86 161)(87 162)(88 163)(89 164)(90 165)(91 166)(92 167)(93 168)(94 169)(95 170)(96 171)(97 172)(98 173)(99 174)(100 175)
(1 78)(2 79)(3 80)(4 81)(5 82)(6 83)(7 84)(8 85)(9 86)(10 87)(11 88)(12 89)(13 90)(14 91)(15 92)(16 93)(17 94)(18 95)(19 96)(20 97)(21 98)(22 99)(23 100)(24 51)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)(101 176)(102 177)(103 178)(104 179)(105 180)(106 181)(107 182)(108 183)(109 184)(110 185)(111 186)(112 187)(113 188)(114 189)(115 190)(116 191)(117 192)(118 193)(119 194)(120 195)(121 196)(122 197)(123 198)(124 199)(125 200)(126 151)(127 152)(128 153)(129 154)(130 155)(131 156)(132 157)(133 158)(134 159)(135 160)(136 161)(137 162)(138 163)(139 164)(140 165)(141 166)(142 167)(143 168)(144 169)(145 170)(146 171)(147 172)(148 173)(149 174)(150 175)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)
G:=sub<Sym(200)| (1,128)(2,129)(3,130)(4,131)(5,132)(6,133)(7,134)(8,135)(9,136)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(17,144)(18,145)(19,146)(20,147)(21,148)(22,149)(23,150)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,109)(33,110)(34,111)(35,112)(36,113)(37,114)(38,115)(39,116)(40,117)(41,118)(42,119)(43,120)(44,121)(45,122)(46,123)(47,124)(48,125)(49,126)(50,127)(51,176)(52,177)(53,178)(54,179)(55,180)(56,181)(57,182)(58,183)(59,184)(60,185)(61,186)(62,187)(63,188)(64,189)(65,190)(66,191)(67,192)(68,193)(69,194)(70,195)(71,196)(72,197)(73,198)(74,199)(75,200)(76,151)(77,152)(78,153)(79,154)(80,155)(81,156)(82,157)(83,158)(84,159)(85,160)(86,161)(87,162)(88,163)(89,164)(90,165)(91,166)(92,167)(93,168)(94,169)(95,170)(96,171)(97,172)(98,173)(99,174)(100,175), (1,78)(2,79)(3,80)(4,81)(5,82)(6,83)(7,84)(8,85)(9,86)(10,87)(11,88)(12,89)(13,90)(14,91)(15,92)(16,93)(17,94)(18,95)(19,96)(20,97)(21,98)(22,99)(23,100)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(101,176)(102,177)(103,178)(104,179)(105,180)(106,181)(107,182)(108,183)(109,184)(110,185)(111,186)(112,187)(113,188)(114,189)(115,190)(116,191)(117,192)(118,193)(119,194)(120,195)(121,196)(122,197)(123,198)(124,199)(125,200)(126,151)(127,152)(128,153)(129,154)(130,155)(131,156)(132,157)(133,158)(134,159)(135,160)(136,161)(137,162)(138,163)(139,164)(140,165)(141,166)(142,167)(143,168)(144,169)(145,170)(146,171)(147,172)(148,173)(149,174)(150,175), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)>;
G:=Group( (1,128)(2,129)(3,130)(4,131)(5,132)(6,133)(7,134)(8,135)(9,136)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(17,144)(18,145)(19,146)(20,147)(21,148)(22,149)(23,150)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,109)(33,110)(34,111)(35,112)(36,113)(37,114)(38,115)(39,116)(40,117)(41,118)(42,119)(43,120)(44,121)(45,122)(46,123)(47,124)(48,125)(49,126)(50,127)(51,176)(52,177)(53,178)(54,179)(55,180)(56,181)(57,182)(58,183)(59,184)(60,185)(61,186)(62,187)(63,188)(64,189)(65,190)(66,191)(67,192)(68,193)(69,194)(70,195)(71,196)(72,197)(73,198)(74,199)(75,200)(76,151)(77,152)(78,153)(79,154)(80,155)(81,156)(82,157)(83,158)(84,159)(85,160)(86,161)(87,162)(88,163)(89,164)(90,165)(91,166)(92,167)(93,168)(94,169)(95,170)(96,171)(97,172)(98,173)(99,174)(100,175), (1,78)(2,79)(3,80)(4,81)(5,82)(6,83)(7,84)(8,85)(9,86)(10,87)(11,88)(12,89)(13,90)(14,91)(15,92)(16,93)(17,94)(18,95)(19,96)(20,97)(21,98)(22,99)(23,100)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(101,176)(102,177)(103,178)(104,179)(105,180)(106,181)(107,182)(108,183)(109,184)(110,185)(111,186)(112,187)(113,188)(114,189)(115,190)(116,191)(117,192)(118,193)(119,194)(120,195)(121,196)(122,197)(123,198)(124,199)(125,200)(126,151)(127,152)(128,153)(129,154)(130,155)(131,156)(132,157)(133,158)(134,159)(135,160)(136,161)(137,162)(138,163)(139,164)(140,165)(141,166)(142,167)(143,168)(144,169)(145,170)(146,171)(147,172)(148,173)(149,174)(150,175), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200) );
G=PermutationGroup([[(1,128),(2,129),(3,130),(4,131),(5,132),(6,133),(7,134),(8,135),(9,136),(10,137),(11,138),(12,139),(13,140),(14,141),(15,142),(16,143),(17,144),(18,145),(19,146),(20,147),(21,148),(22,149),(23,150),(24,101),(25,102),(26,103),(27,104),(28,105),(29,106),(30,107),(31,108),(32,109),(33,110),(34,111),(35,112),(36,113),(37,114),(38,115),(39,116),(40,117),(41,118),(42,119),(43,120),(44,121),(45,122),(46,123),(47,124),(48,125),(49,126),(50,127),(51,176),(52,177),(53,178),(54,179),(55,180),(56,181),(57,182),(58,183),(59,184),(60,185),(61,186),(62,187),(63,188),(64,189),(65,190),(66,191),(67,192),(68,193),(69,194),(70,195),(71,196),(72,197),(73,198),(74,199),(75,200),(76,151),(77,152),(78,153),(79,154),(80,155),(81,156),(82,157),(83,158),(84,159),(85,160),(86,161),(87,162),(88,163),(89,164),(90,165),(91,166),(92,167),(93,168),(94,169),(95,170),(96,171),(97,172),(98,173),(99,174),(100,175)], [(1,78),(2,79),(3,80),(4,81),(5,82),(6,83),(7,84),(8,85),(9,86),(10,87),(11,88),(12,89),(13,90),(14,91),(15,92),(16,93),(17,94),(18,95),(19,96),(20,97),(21,98),(22,99),(23,100),(24,51),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77),(101,176),(102,177),(103,178),(104,179),(105,180),(106,181),(107,182),(108,183),(109,184),(110,185),(111,186),(112,187),(113,188),(114,189),(115,190),(116,191),(117,192),(118,193),(119,194),(120,195),(121,196),(122,197),(123,198),(124,199),(125,200),(126,151),(127,152),(128,153),(129,154),(130,155),(131,156),(132,157),(133,158),(134,159),(135,160),(136,161),(137,162),(138,163),(139,164),(140,165),(141,166),(142,167),(143,168),(144,169),(145,170),(146,171),(147,172),(148,173),(149,174),(150,175)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)]])
C22×C50 is a maximal subgroup of
C23.D25
200 conjugacy classes
class | 1 | 2A | ··· | 2G | 5A | 5B | 5C | 5D | 10A | ··· | 10AB | 25A | ··· | 25T | 50A | ··· | 50EJ |
order | 1 | 2 | ··· | 2 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 25 | ··· | 25 | 50 | ··· | 50 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
200 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||
image | C1 | C2 | C5 | C10 | C25 | C50 |
kernel | C22×C50 | C2×C50 | C22×C10 | C2×C10 | C23 | C22 |
# reps | 1 | 7 | 4 | 28 | 20 | 140 |
Matrix representation of C22×C50 ►in GL3(𝔽101) generated by
1 | 0 | 0 |
0 | 100 | 0 |
0 | 0 | 100 |
100 | 0 | 0 |
0 | 100 | 0 |
0 | 0 | 1 |
14 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 56 |
G:=sub<GL(3,GF(101))| [1,0,0,0,100,0,0,0,100],[100,0,0,0,100,0,0,0,1],[14,0,0,0,16,0,0,0,56] >;
C22×C50 in GAP, Magma, Sage, TeX
C_2^2\times C_{50}
% in TeX
G:=Group("C2^2xC50");
// GroupNames label
G:=SmallGroup(200,14);
// by ID
G=gap.SmallGroup(200,14);
# by ID
G:=PCGroup([5,-2,-2,-2,-5,-5,118]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^50=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations
Export